A Heuristic Approach to Scoring Gene Clustering Algorithms
نویسندگان
چکیده
In the past decades, many clustering algorithms have been proposed for the analysis of gene expression data, but little guidance is available to help choose among them. Given the same data set, different clustering algorithms can potentially generate very different clusters. A biologist with a gene expression data set is faced with the problem of choosing an appropriate clustering algorithm for his or her data set. In this paper, we present a new tool that allows the similarity analysis of clusters generated by different algorithms. This tool may: (1) improve the quality of the data analysis results, (2) support the prediction of the number of relevant clusters in the Microarray datasets, and (3) provide cross-reference between different algorithms. The software tool can also be used to analyze cluster similarities from other biomedical data. We demonstrate the use of this tool with gene expression data of Leukaemia and Sporulation.
منابع مشابه
Improved Automatic Clustering Using a Multi-Objective Evolutionary Algorithm With New Validity measure and application to Credit Scoring
In data mining, clustering is one of the important issues for separation and classification with groups like unsupervised data. In this paper, an attempt has been made to improve and optimize the application of clustering heuristic methods such as Genetic, PSO algorithm, Artificial bee colony algorithm, Harmony Search algorithm and Differential Evolution on the unlabeled data of an Iranian bank...
متن کاملA Multi-Objective Approach to Fuzzy Clustering using ITLBO Algorithm
Data clustering is one of the most important areas of research in data mining and knowledge discovery. Recent research in this area has shown that the best clustering results can be achieved using multi-objective methods. In other words, assuming more than one criterion as objective functions for clustering data can measurably increase the quality of clustering. In this study, a model with two ...
متن کاملImproving Vehicular Ad-Hoc Network Stability Using Meta-Heuristic Algorithms
Vehicular ad-hoc network (VANET) is an important component of intelligent transportation systems, in which vehicles are equipped with on-board computing and communication devices which enable vehicle-to-vehicle communication. Consequently, with regard to larger communication due to the greater number of vehicles, stability of connectivity would be a challenging problem. Clustering technique as ...
متن کاملA heuristic approach for multi-stage sequence-dependent group scheduling problems
We present several heuristic algorithms based on tabu search for solving the multi-stage sequence-dependent group scheduling (SDGS) problem by considering minimization of makespan as the criterion. As the problem is recognized to be strongly NP-hard, several meta (tabu) search-based solution algorithms are developed to efficiently solve industry-size problem instances. Also, two different initi...
متن کاملDiagnosis of Heart Disease Based on Meta Heuristic Algorithms and Clustering Methods
Data analysis in cardiovascular diseases is difficult due to large massive of information. All of features are not impressive in the final results. So it is very important to identify more effective features. In this study, the method of feature selection with binary cuckoo optimization algorithm is implemented to reduce property. According to the results, the most appropriate classification fo...
متن کامل